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Abstract. We develop an extension of local-equilibrium thermodynamics for systems with
components at different temperatures. The description includes heat conduction, diffusion, a
chemical reaction and heat losses. The ensuing equations are applied to the problem of thermal
wavefront propagation. There is satisfactory agreement between the predicted and the experimental
values for the speed of combustion flames over cellulosic fuels. Heat losses cause a decrease of
the front speed. This generalizes Zeldovich’s result. For radiative losses, the effect can easily be
about 15%. When the finite speed of thermal signals is taken into account, an additional lowering
of the thermal wavefront speed results.

1. Introduction

The components of mixtures have different temperatures in many physical [1–3] chemical [4],
climatological [5] and astrophysical [6] phenomena. Some examples are neutron
thermalization processes [1], shock waves [2], laser heating of metals [7], plasmas [3, 6, 8],
typical chemical reactions [4, 9, 10], electron swarms in gases [11] and solute–solvent
systems [12]. Classical irreversible thermodynamics (CIT) is capable of describing the
phenomenology of such systems [13] provided that the local thermodynamic equilibrium (LTE)
assumption [14] is a valid approximation.

In order to cope with non-LTE states, CIT has been generalized in a variety of situations,
such as heat conduction, viscous flow, diffusion, electrical conduction, chemical reactions and
reaction–diffusion systems [15–22]. However, such extended irreversible thermodynamics
(EIT) models invariably assume a single temperature for the system under consideration so
that many interesting phenomena (such as those mentioned above) still lie out of the formalism
of EIT. One of our purposes here is to tackle this problem: in section 2.2 we develop a model, in
the lines of EIT, which generalizes the current CIT description of several-temperature systems.
In both the CIT and EIT descriptions (sections 2.1 and 2.2, respectively), we will also allow
for energy source terms, which for the sake of definiteness we shall consider due to a chemical
reaction. Our attention will focus on a special situation, namely that in which the reacting
species have a different temperature than that of an additional, nonreacting component. For

0305-4470/00/396953+21$30.00 © 2000 IOP Publishing Ltd 6953



6954 J Fort et al

the sake of mathematical simplicity, we will introduce some additional simplifications that
enable us to see very clearly the differences between the CIT and EIT descriptions, as well as
to compare with experiment (section 4).

Several-temperature systems with energy source terms for the different components arise
in, e.g., typical chemical reactions [4,9,10,23]. Another example can be found in astrophysical
models of accretion flows, where protons have a much higher temperature than electrons;
here protons react, producing neutral and charged pions [6]. As a third example, one may
consider a partly ionized gas. Electrons and ions react (ionization and recombination), but
have a slow rate of energy transfer (because of their very different masses), so that they
have different temperatures and heat fluxes in general; in this case electrons release energy
to a third component, namely neutral atoms [24]. Also, in plasmas under electric fields, the
electrons (and ions) can react with a higher temperature than that of the neutral particles.
In hot-atom chemistry, atoms produced in nuclear transformations acquire states of higher
temperature than that of their surrounding molecules [25]. Yet another example is combustion
waves in fuel mixtures that are either highly diluted in an inert component [26] or contain
macroscopic particles (see sections 2 and 4). There are also biophysical applications such as
forest fire models, which have been treated as a reaction–diffusion process [27] in spite of
being essentially driven by the interplay of reaction and heat conduction (instead of diffusion).
Forest fires are a special case of combustion waves. In simple, two-dimensional forest fire
models there will again appear a heat loss to an inert component (the soil) in addition to the
combustion taking place in the grass or trees (the average temperature of which will be higher
than that of the soil). As a last example of several-temperature systems with energy sources
and an equilibration process, we mention metals irradiated by laser pulses: heat is mainly
transported by electrons, which lose energy to the lattice. In this specific example, the energy
source corresponds not to a chemical reaction but to a laser heat source [7,28]†. Therefore, the
analysis of several-temperature systems with energy sources and/or temperature equilibration
processes among components is not of purely academic interest but can be relevant in many
different phenomena. The unification of the thermodynamical properties of such different
systems is appealing in its own right, and section 2 is devoted to this purpose. As mentioned
above, we have decided to make some assumptions that will be explained below in more detail,
since in this way we can find reasonably simple results that can be used in the future to develop
more general and complicated models.

As an application of the thermodynamic model of section 2, we shall analyse the
propagation of thermal wavefronts (section 3). Whereas the propagation of reaction wavefronts
has aroused much interest in diffusive systems [27, 29–34], wavefront propagation in
conducting systems is also a relevant problem (e.g. in the propagation of combustion waves).
The equations derived from CIT and EIT (section 2) are applied in section 3 to analyse the
propagation of thermal wavefronts. This allows us to generalize previously known results by
incorporating effects related (i) to heat losses and (ii) to the boundness of the speed of heat
conduction. In section 3 we predict a law for the decrease of the propagation velocity due to the
heat losses (in both the CIT and EIT descriptions) and an additional decrease due to the finite
speed of propagation of thermal signals (which cannot be obtained from CIT but does result
from the EIT approach). Finally, in section 4 we outline an application of the EIT model, we
apply the CIT approach to predict the speed of thermal fronts in a special case (flame spread
over cellulosic fuels), compare with the corresponding experimental results and estimate the
effects of radiative losses. Section 5 is devoted to concluding remarks.

† See also the third paper in [17].
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2. Thermodynamical approach

The general form for the law of balance of energy is [14]

∂

∂t
(ρu) = −�∇ · �J (1)

where t is the time, ρ is the density, u is the total energy per unit mass of the system and �J
is the total energy flux. We will analyse a multicomponent matter system by following steps
analogous to those used for radiation–matter systems [35, 36]. Let us consider a mixture of
components A, B, C, D, . . . . In order to develop a simple model, we make some assumptions
which we indicate in their proper context.

(i) We will consider the case in which component A is inert. For the sake of definiteness,
let us consider the case in which components B, C and D react according to

νBB + νCC → νDD (2)

where νB, νC and νD are the stoichiometric coefficients. We assume that the reacting
components share a common temperature,

TB = TC = TD (3)

whereas the nonreacting component A has temperature TA. Chemical reactions in the presence
of a carrier gas (component A in our notation) with its own temperature have been widely
studied [23] (some specific examples of physical phenomena in which they arise have been
mentioned in section 1). Different temperatures in a single system are not easy to measure
experimentally. Indeed, the assumption of a single temperature TB for the reacting species will
make it possible to compare with experiment (section 4).

(ii) Again for the sake of mathematical simplicity, we assume that the overall mixture is
macroscopically at rest (i.e. it has vanishing barycentric velocity, �v = 0), and that �qA ≈ 0,
�qC ≈ 0, �qD ≈ 0, . . . , i.e. that heat is transported by component B. This happens, for instance,
in the laser heating of metals, where the heat flux is due to electrons, whereas the conduction
of heat by phonons is negligible [7]. It also happens in many combustion systems over solid
fuels, where heat conduction typically takes place mainly in one of the components (either the
fuel or the gas). This depends on the relative values of their thermal parameters at the typical
pressures and temperatures of the system [37].

Under the assumptions made, equation (1) can be written as

∂

∂t
(ρu) = −�∇ · �qB. (4)

Concerning the energy evolution of the components, it can be handled in a similar way to
the equation for the complete mixture. We have for component B

∂

∂t
(ρBuB) = −�∇ · �qB + FB + αAB (5)

where the partial density ρB is the mass of component B per unit volume of the system, uB is
the energy of B per unit mass of B and

FB = −νBvchEB (6)

is the energy source term, with vch the chemical rate of reaction (2). EB denotes the mean
(kinetic plus electronic) energy of a molecule of species B (see, e.g., [38]). Similarly, we can
introduce ρi and Ei for the reacting species i = C, D. Since the energy must be conserved in
reaction (2) we have [38]

νBEB + νCEC = νDED. (7)
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In equation (5) αAB is the rate of energy transfer from component A to component B per unit
volume of the system, and it will depend on their temperatures. It can be calculated from
kinetic-theoretical models for dilute [39] and dense [40] gases, for the interaction between
electrons and the phonon lattice in metals [7], etc. For the sake of completeness we give the
microscopic expression for αAB in a relevant case, namely that corresponding to energy losses
from a reactive gas component B to macroscopic or mesoscopic particles A. Then, the energy
lost per unit time and volume can be estimated as the number of collisions (per unit time and
volume) multiplied by the mean energy exchange per collision, resulting in [41, 42]

αAB = πr2

√
π

cvP

R

√
8k

mBTB
af nA(TA − TB) (8)

where r is the mean radius of the particles A, cv the molar specific heat of gas B at constant
volume, P its pressure, R the universal gas constant, mB the molecular mass of gas B and
af the Knudsen accommodation factor (af < 1), which takes into account the fact that gas
molecules do not become thermalized with the particles after a single collision [42]. nA is the
number density of mesoscopic particles A and k is the Boltzmann constant.

Before going ahead, let us stress that the theory presented in sections 2 and 3 does not
rely on a specific microscopic expression for αAB.

Concerning components C and D, we have, analogously to equation (5) and making use
of (3),

∂

∂t
(ρCuC) = FC + αAC (9)

∂

∂t
(ρDuD) = FD + αAD (10)

where for the reaction (2) we have (analogously to equation (6))

FC = −νCvchEC (11)

FD = νDvchED. (12)

The equation of balance of energy for species A can be obtained from equations (4), (5), (9)
and (10), taking into account that

ρu = ρAuA + ρBuB + ρCuC + ρDuD. (13)

This yields

∂

∂t
(ρAuA) = −αA (14)

where we have defined αA ≡ αAB + αAC + αAD, and used equation (7).
In the next two sections, we derive evolution equations according to CIT and generalize

them in the framework of EIT.

2.1. CIT

In CIT, the system is assumed to be in LTE [14], i.e. the local specific entropy depends on
the same variables as in equilibrium. In order to express this in mathematical terms, we recall
that the CIT approach to radiation–matter systems in [35, 36] was constructed by assuming
that the entropy per unit mass depends on the matter energy per unit mass and on the radiation
energy also per unit mass of matter. This theory, which is in agreement with microscopic
results [43], can be readily generalized to multicomponent matter systems by assuming the
specific entropy of the system to depend on the energies of the components per unit total
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mass. In addition, the entropy will also depend on the concentrations, which change over time
because of the chemical reaction (2). We do not include global density changes because, as
mentioned above, we consider the overall system to be at rest macroscopically, thus the specific
volume is constant. We can express these ideas in the form of an equation for the time rate of
change for the entropy per unit mass,

dsle
dt

=
∑
i

1

Ti

dûi
dt

−
∑
i

µi

Ti

dĉi
dt

(15)

where the subscript le to the specific entropy s denotes local equilibrium. We have defined

ûi ≡ ρiui/ρ = ĉiui (16)

as the energy of component i per unit mass of the whole system, and

ĉi ≡ ρi/ρ (17)

are the concentrations (or mass fractions). The thermodynamical temperatures Ti and chemical
potentials µi of the components are defined by

1

Ti
≡ ∂sle

∂ûi
(18)

µi ≡ −Ti ∂sle
∂ĉi

(19)

respectively. The definitions (18) are analogous to the corresponding ones for radiation–matter
systems, introduced in section 3 of [36].

Equation (5) can be expressed in terms of the new partial energy variable ûB as follows:

ρ
∂ûB

∂t
= −�∇ · �qB + FB + αAB. (20)

The same can be done with equations (9), (10) and (14). Insertion of the equations thus derived
into (15), and use of equations (3), (6), (7), (11) and (12), yields

ρ
dsle
dt

= −
�∇ · �qB

TB
+ αA

(
1

TB
− 1

TA

)
− µA

TA

dĉA

dt
− 1

TB

(
µB

dĉB

dt
+ µC

dĉC

dt
+ µD

dĉD

dt

)
(21)

where we have recalled the definition αA ≡ αAB + αAC + αAD as well as equation (3). The last
term in equation (21) may be rewritten in terms of the local-equilibrium chemical affinity of
the reaction (2), namely

Ale ≡ µBmBνB + µCmCνC − µDmDνD (22)

(mi is the molecular mass of component i), by making use of the balance equations for the
mass fractions [14, 15],

ρ
dĉB

dt
= −mBvchνB − �∇ · �JB (23)

ρ
dĉC

dt
= −mCvchνC − �∇ · �JC (24)

ρ
dĉD

dt
= mDvchνD − �∇ · �JD (25)

ρ
dĉA

dt
= 0 (26)

where �Ji is the diffusive flux for species i = B, C, D. In equation (26), we have assumed
�JA � 0, i.e. a uniform distribution of the nonreacting species: this can be easily generalized,
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but it will make the calculations in section 3 simpler and adequate to compare with experiment
(section 4). In the way explained above, we obtain

ρ
dsle
dt

= −
�∇ · �qB

TB
+ αA

(
1

TB
− 1

TA

)
+
∑
i

µi

TB

�∇ · �Ji +
vchAle

TB
. (27)

Comparison with the general law of balance of entropy, namely,

ρ
dsle
dt

= −�∇ · �J sle + σ sle (28)

leads to the following identifications for the local-equilibrium entropy flux s �J sle and entropy
production rate σ sle:

�J sle = �qB

TB
−
∑
i

µi

TB

�Ji (29)

σ sle = −�qB ·
�∇TB

T 2
B

−
∑
i

�Ji · �∇
(
µi

TB

)
+
vchAle

TB
+ αA

TA − TB

TATB
. (30)

According to the Curie ‘principle’ [15, 44], fluxes and forces of different tensorial order
do not couple. Thus we consider the following form for the so-called constitutive or
phenomenological equations:

�qB = −Lq
�∇TB

T 2
B

−
∑
i

Mqi
�∇
(
µi

TB

)
(31)

�Ji = −Li �∇
(
µi

TB

)
−
∑
j =i

Mij
�∇
(
µj

TB

)
−Miq

�∇TB

T 2
B

(32)

vch = 'Ale +Mvα(TA − TB) (33)

αA = α(TA − TB) +MαvAle. (34)

The second law of thermodynamics requires that σ sle � 0. This implies that λB ≡ Lq/T
2

B � 0
(λB is the thermal conductivity of component B), Li � 0, ' � 0 and α � 0. Additional
restrictions for the cross coefficients Mqi,Mij , Mvα , etc, can be easily derived in the usual
way [15], but they are not necessary for the purposes of this paper. Let us, however, mention
that the Onsager symmetry relations [15] are in this case Mqi = Mij = Mji and Mαv = Mvα .
Equation (31) may be written as

�qB = −λBeff �∇TB −
∑
j

Dqj
�∇ ĉj (35)

where λBeff ≡ λB − ∑
i (Mqiµi)/T

2
B +

∑
i (Mqi∂µi/∂TB)/TB is an effective thermal

conductivity, and Dqj ≡ ∑
i (Mqi∂µi/∂ĉj )/TB are thermodiffusion coefficients. If the cross

terms were neglected, equations (32) and (35) would become the Fourier and Fick laws,
respectively [14, 15]. Equation (34) describes the equilibration of temperatures between the
components. On the other hand, equation (33) without the cross term has previously been
discussed in detail [21, 38] and is unrealistic except if the local-equilibrium affinity Ale is
small enough (see [21] and references therein). However, if cross terms can be neglected
equation (33) is not relevant in order to analyse the propagation of thermal wavefronts. This will
be performed in section 3, and compared to experiment in section 4, by means of equations (34)
and (35).

In this section we have generalized the usual irreversible thermodynamical analysis of
several-temperature systems [13] to the case in which there is a chemical reaction with energy
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source terms Fi . In contrast to the usual CIT approach [13], we have taken such chemical
source terms into account because, as we shall see (section 3), they are necessary for the
propagation of thermal wavefronts.

2.2. EIT

As noted by Landau and Lifshitz [45, pp 194–5], the classical theory of heat conduction
(based on Fourier’s law, equation (31)) predicts that the effect of any thermal perturbation
is propagated instantaneously through all space. This is why extensions of the Fourier law,
avoiding this result, have been proposed and used for a long time. They can be derived from
EIT [15–20]. We will apply this approach to reacting systems with several temperatures, by
extending the CIT model presented in section 2.1. Since the procedure is similar to that applied
to radiation–matter systems with two temperatures (section 4 in [36]), it will be sufficient to
give the main steps.

The starting point in EIT is to consider that the specific entropy depends on the heat and
diffusion fluxes in addition to the classical variables of CIT [15–20]. Thus in this framework
we may assume that near equilibrium equation (15) is generalized into

ds

dt
=
∑
i

1

θi

dûi
dt

−
∑
i

ηi

θi

dĉi
dt

− γB(ûB)

TBρ
�qB · d�qB

dt
−
∑
i

δi(ûi)

Tiρ
�Ji · d �Ji

dt
(36)

where we have introduced the nonequilibrium thermodynamical temperatures θi and chemical
potentials ηi of the components, as well as the quantities γB(ûB) and δi(ûi), as

1

θi
≡ ∂s

∂ûi
(37)

ηi ≡ −θi ∂s
∂ĉi

(38)

γB(ûB)

TBρ
�qB ≡ − ∂s

∂ �qB
(39)

δi(ûi)

Tiρ
�Ji ≡ − ∂s

∂ �Ji
. (40)

These equations are analogous to the corresponding nonequilibrium ones for radiation–matter
systems at different temperatures, introduced in section 4 of [36].

We recall that, for simplicity, we have assumed a two-temperature system: the inert
component A has its own temperature and the reacting components B, C and D have another
one (so θB = θC = θD, in analogy to equation (3)). Now because the entropy density must
be an exact differential, we can require the second cross derivatives to be independent of the
order of derivation ( ∂2s

∂ �qB∂ûi
= ∂2s

∂ûi ∂ �qB
etc). This yields, in particular

1

θB
= 1

TB
− �qB · �qB

2ρ

∂

∂ûB

(
γB

TB

)
−
∑
i

�Ji · �Ji
2ρ

∂

∂ûi

(
δi

TB

)
(41)

θA = TA. (42)

As in the previous section, we now use in equation (36) the balance equation for
ûB (equation (20)) and the corresponding ones for the other species, as well as
equations (6), (7), (11) and (12). This yields

ρ
ds

dt
= −

�∇ · �qB

θB
+ αA

(
1

θB
− 1

θA

)
− ρ

θB

(
ηB

dĉB

dt
+ ηC

dĉC

dt
+ ηD

dĉD

dt

)
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−γB(ûB)

TB
�qB · d�qB

dt
−
∑
i

δi(ûi)

TB

�Ji · d �Ji
dt

(43)

which generalizes equation (21). Making use of equations (23)–(26), the third term on the
RHS may be rewritten in terms of the generalized chemical affinity of the reaction (2), which
we define as

A ≡ ηBmBνB + ηCmCνC − ηDmDνD. (44)

This yields

ρ
ds

dt
= −

�∇ · �qB

θB
+ αA

(
1

θB
− 1

θA

)
+
∑
i

ηi

θB

�∇ · �Ji +
vchA

θB

−γB(ûB)

TB
�qB · d�qB

dt
−
∑
i

δi(ûi)

TB

�Ji · d �Ji
dt
. (45)

Comparison with the general law of balance of entropy, as in the previous section 2.1, now
leads to the following identifications for the entropy flux �J s and entropy production rate σ s :

�J s = �qB

θB
−
∑
i

ηi

θB

�Ji (46)

σ s = −�qB ·
( �∇θB

θ2
B

+
γB(ûB)

TB

d�qB

dt

)
−
∑
i

�Ji ·
(

�∇
(
ηi

θB

)
+
δi(ûi)

TB

d �Ji
dt

)

+
vchA

θB
+ αA

θA − θB

θAθB
. (47)

This suggests, in the spirit of EIT [15], consideration of evolution equations with additional
terms containing the time derivatives of the fluxes. Thus we generalize equations (31)–(34)
by including terms in d�qB/dt and d �Ji/dt ,

�qB = −λB

(
�∇θB + γB(ûB)TB

d�qB

dt

)
−
∑
i

Nqi �Ji (48)

�Ji = −Li
(

�∇
(
ηi

θB

)
+
δi
(
ûi
)

TB

d �Ji
dt

)
−
∑
j =i

Nij �Jj −Niq �qB (49)

vch = 'A +Mvα(θA − θB) (50)

αA = α(θA − θB) +MαvA (51)

and the second law (σ s � 0) implies that λB � 0, Li � 0, ' � 0 and α � 0. One
could of course include terms containing the time derivatives of vch and αA in equations (50)
and (51) (see [21]) but there is as yet no experimental evidence for such terms (moreover,
they would make calculations extremely cumbersome). Defining, analogously to what has
been done in equation (35), λBeff ≡ λB +

∑
i (NqiLiηi)/θ

2
B − ∑

i (NqiLi∂ηi/∂θB)/θB and
Dqj ≡ ∑

i (NqiLi∂ηi/∂ĉj )/θB, and also the thermal relaxation time of component B as

τB ≡ λBγB(ûB)TB (52)

and neglecting higher-order terms, equation (48) becomes

�qB + τB
d�qB

dt
= −λBeff �∇θB −

∑
j

Dqj
�∇ ĉj . (53)

This is nothing but the Maxwell–Cattaneo equation [15], here derived for a single component
B of the mixture, with the additional thermodiffusion terms. Equations (51) and (53), which



Several-temperature systems 6961

generalize (31) and (34), will be used in section 3.2 to analyse the propagation of thermal
wavefronts in the EIT approach. The remaining equations are not necessary for this purpose,
and this is why we have not computed the nonequilibrium chemical potentials ηi explicitly.
Let us however mention that equation (49) is a relaxational equation for diffusion, which
has been previously considered (see equation (10.6) in [15]) and here includes an additional
thermodiffusion term.

It is worthwhile to observe that equations (51) and (53) without cross terms have been
considered by Sobolev [28], who did not, however, distinguish between the nonequilibrium
temperature θB and the local-equilibrium one TB. The reason lies in the fact that Sobolev did
not carry out a first-principles EIT development such as the one presented here. This point
is interesting because we have shown that both temperatures are different (see equation (41)),
and, since it is the nonequilibrium temperature θB that appears in equation (51), the thermal
exchange between components is driven by the difference θA − θB rather than TA − TB.
This is not surprising, since an analogous result has been derived for the much simpler case
of radiation–matter systems (see equation (35) in [36]), but the corresponding analysis for
multi-temperature matter systems had not been presented before in the literature. It gives
a thermodynamical, sound foundation to the application presented in section 3.2, where the
generalized temperatures θi will be used (instead of Ti), in agreement with the results derived
above. Besides this, our new result that θA − θB (instead of TA − TB) is the driving force of
energy transfer (in nonequilibrium multitemperature systems) should also be useful concerning
the debate on the correct definition of temperature outside LTE [46].

3. Thermal wavefronts

In this section we apply the models presented in section 2 to the propagation of reaction–
conduction wavefronts. This will allow us to generalize some classical results to the case in
which heat losses are important (section 3.1) and to analyse the consequences of the finite
propagation speed of thermal signals (section 3.2).

In order to analyse temperature changes related to the proceeding of, say, an exothermic
chemical reaction, it will be useful to write the mean energy Ei of a molecule of species i,
already considered in equations (5)–(7), as

Ei = Eki + Epi (54)

whereEki stands for the mean kinetic (i.e. thermal) energy, andEpi for the mean potential (i.e.
electronic) energy of a molecule of species i. The heat of the chemical reaction (2) is [26]

Q ≡ νDEkD − νBEkB − νCEkC = νBEpB + νCEpC − νDEpD (55)

where use has been made of the conservation of energy (equation (7)). We shall from now
on consider an exothermal chemical reaction, i.e. Q > 0. Note that when using the second
law of thermodynamics (section 2) we have applied the total energies Ei , thereby taking into
account the entropy production due to all of the processes in the system. By contrast, now
we are interested in the evolution of temperatures. This will be related to the reaction heat Q,
which is in turn linked to the kinetic energies Eki . Therefore, it will be useful to define the
kinetic energy per unit mass of species i as uki . Then we have

∂

∂t
(ρBukB) = −�∇ · �qB − νBvchEkB + αAB (56)

∂

∂t
(ρCukC) = −νCvchEkC + αAC (57)

∂

∂t
(ρBukD) = νDvchEkD + αAD (58)
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which are analogous to equations (5), (9) and (10), with the difference that now the kinetic
specific and mean energies (uki and Eki , respectively) appear instead of the total ones (ui and
Ei). The evolution equation for the temperature TB of the reacting species can be now derived.
By defining the density ρr and specific internal energy ukr of the reactive subsystem as

ρr ≡ ρB + ρC + ρD (59)

ρrukr ≡ ρBukB + ρCukC + ρDukD (60)

from equations (56)–(60) we obtain

ρrcr
∂TB

∂t
= −ukr ∂ρr

∂t
+
∂

∂t
(ρBukB) +

∂

∂t
(ρCukC) +

∂

∂t
(ρDukD)

= − ukr
∂ρr

∂t
− �∇ · �qB + vch(−νBEkB − νCEkC + νDEkD) + αA (61)

where cr ≡ (ρBcB + ρCcC + ρDcD)/ρr , with ci the specific heat of component i, and we have
recalled that αA ≡ αAB + αAC + αAD. By making use of the mass balance equations (23)–(26),
the definitions �Ji ≡ ρi(�vi − �v) and ρ�v ≡ ∑

i ρi �vi (in this paper we have assumed �v = 0, but∑
i

�Ji = 0 holds in general), and the conservation of mass in the chemical reaction (2) (i.e.
νBmB + νCmC = νDmD), the first term in the RHS of equation (61) is easily seen to vanish.
Use of equation (55) finally yields

ρrcr
∂TB

∂t
= −�∇ · �qB + vchQ + αA (62)

so the reaction heat Q increases TB, as it should. TB is the temperature of the reacting species
B, C and D, which lose energy to the inert component A (the last term in equation (62)).

3.1. CIT

From equation (62) and the CIT equations (34) and (35) we obtain the evolution equation for
the temperature TB as

ρrcr
∂TB

∂t
= λBeff∇2TB +

∑
i

Dqi∇2ĉi +Qvch(TB) + α(TA − TB) +MαvAle. (63)

The last term describes a cross effect between chemical reaction and temperature equilibration,
and is likely to have small relevance within CIT (it will be dropped when comparing with
experiment in section 4). However, it may be important in special applications, e.g. as
compared with the additional terms arising from EIT (section 3.2), so let us include it here for
completeness. Using equation (33) and neglecting higher-order terms,

ρrcr
∂TB

∂t
= λBeff∇2TB +

∑
i

Dqi∇2ĉi +Qvch(TB) + α(TA − TB) +
Mαv

'
vch(TB). (64)

In general, equation (63) is coupled to the evolution equation for TA, which can be obtained
by using the analogue to equations (56)–(58) for component A, namely ∂(ρAukA)/∂t = −αA,
equations (33) and (34) and neglecting higher-order terms as above,

ρAcA
∂TA

∂t
= −α(TA − TB)− Mαv

'
vch(TB) (65)

where cA is the specific heat of component A. Equation (65) has the typical form used in
the description of energy equilibration processes in mixtures (see, e.g., [47, 48]), with an
additional cross term. Equations (64) and (65) are analogous to the Lotka–Volterra equations
used in population dynamics (e.g. predator–prey and parasite–host systems) [29] and to the
Ginzburg–Landau equations used in the analysis of front propagation in superconductors [49],
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with an additional cross term. As in those systems, the evolution of the field variables (TB

and TA in our case) are coupled, but in order to analyse the propagation of wavefronts we can
proceed as follows. Consider, for example, a system in which at t = 0 all components have
the same temperature (TB = TA). Then, some of the components are heated in a localized
region of the system, so that TB is locally increased. One example is laser-heating of metals,
where electrons absorb the radiation energy (whereas the heat absorbed directly by the lattice
is negligible) [7]. Another example is a locally activated chemical reaction such as (2) in the
presence of a colder (or hotter), nonreacting component A. Heat conduction (the flux �qB) will
raise the temperature TB in surrounding regions (the first term in the RHS of equation (63)),
which will in turn speed up the chemical reaction (2). This will affect the evolution of TB (the
third term in the RHS of equation (63)), i.e. we have a joint effect of conduction and reaction
(plus that arising from the energy transfer to component A, see the fourth term in the RHS of
equation (63), and the cross effects described by the additional terms in equation (63)). In such
an instance, we expect intuitively that a thermal wavefront will propagate into the region of the
system where TB � TA. For simplicity we consider a system in which all quantities depend
on a single coordinate x, and assume that the temperature dependence of the parameters λr ,
α and cr in equation (63) can be neglected in the range of temperatures considered (this is
the usual approach in the study of thermal wavefront propagation [26]). In order to find out
wavefront solutions moving with velocity v, we change to a frame moving with the wavefront
by introducing the variable

z = x − vt (66)

so that equation (63) becomes a single-variable differential equation,

−ρrcrv dTB

dz
= λBeff

d2TB

dz2
+
∑
i

Dqi

d2ĉi

dz2
+

(
Q +

Mαv

'

)
vch(TB) + α(TA − TB). (67)

We will apply the linearization method, which has been successfully used for reaction–diffusion
systems (the temperatures in equations (63) and (65) are then replaced by the corresponding
particle densities, and near the wavefront edge one has nA � nA0 and nB � nB0 + ε, where nA0

and nB0 are the initial particle densities for the preexisting and incoming species, respectively,
and ε is a perturbation [29,34]). In our case, near the wavefront edge the heat flux �qB will lead
to an increase in the temperature of component B, which in the first-order approximation may
be analogously written as TB � T + ε, where ε is a perturbation, whereas since �qA � 0 we will
analogously have TA � T . Here T is the initial temperature, shared by all components before
the arrival of the thermal front. The increase ε in TB (due to the heat flux �qB) will thereafter
speed up the chemical reaction, changing the initial concentrations ĉi0. Thus, it is reasonable
to linearize equation (67) under the ansatz TB � T + ε, TA � T and ci � ĉi0, in complete
analogy to the well established approach to reaction–diffusion explained above. In this way
we obtain†

−ρrcrv dε

dz
= λBeff

d2ε

dz2
+

(
Q +

Mαv

'

)
∂vch

∂TB

∣∣∣∣
T

ε − αε. (68)

† In general, the reactive term in equation (68) is (Q+ Mαv
'
)(vch|T + ∂vch

∂TB
|T ε). However, the first term inside the second

parentheses can be neglected for flames with an essentially isothermal region, the so-called pyrolysis zone, which is
observed in the experimental temperature profiles of flames over cellulosic fuels (see e.g. figure 3 in [50] and comments
therein). In a frame moving with the flame front, the system variables are homogeneous within the pyrolysis region so
equation (67) yields (Q + Mαv

'
)vch(TB) + α(TA − TB) = 0, which means that heat losses compensate the exothermic

reaction in the pyrolysis zone. In this zone, ε ≡ TB − T � 0, with T the so-called pyrolysis temperature [50], and
equation (68) with inclusion of the whole reactive term yields precisely vch|T � 0 in the linear approximation. This
is analogous to the corresponding approximation used in the source term of reaction–diffusion systems (e.g., the use
of f (0) = 0 in [34]), and is shown to yield good agreement with experiment for flame speed over cellulosic fuels in
section 4 in this paper. It can be easily applied to radiative losses also; see the note in this paper.
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Solutions with the form ε(z) ∼ eµz lead to the characteristic equation

λBeffµ
2 + ρrcrvµ +

(
Q +

Mαv

'

)
∂vch

∂TB

∣∣∣∣
T

− α = 0. (69)

Solving this equation for µ and requiring that µ ∈ R we find that the minimum propagation
velocity of the thermal wavefront is

v = 2
√
λBeff

ρrcr

√(
Q +

Mαv

'

)
∂vch

∂TB

∣∣∣∣
T

− α. (70)

If cross effects can be neglected (Mαv � 0, see the text below equation (63), and Mqi � 0, so
that λBeff � λB and Dqi � 0, see below equation (51)), we obtain

v = 2
√
λB

ρrcr

√
Q
∂vch

∂TB

∣∣∣∣
T

− α. (71)

In section 4 the predictions of this equation will be compared with experimental results.
Note that τr ≡ ρrcr/(Q

∂vch
∂TB

|T ) and τe ≡ ρrcr/α have units of time. They may be seen as
characteristic time scales of the chemical reaction and the temperature equilibration process,
respectively. Therefore, according to equation (71) the order of magnitude of the propagation
speed is

v ∼
√
χB

τr
− χB

τe
(72)

with χB ≡ λB
ρr cr

the thermal diffusivity of the reactive subsystem, due to the conduction of heat
by component B. In the absence of energy transfer to the nonreacting component A (α = 0),
this becomes

v ∼
√
χB

τr
(73)

which agrees with the order-of-magnitude estimation performed in a different way by Landau
and Lifshitz [45, p 475], for the single-temperature case (α = 0).

Below we will also compare our results to some analogous ones for non-conducting
systems and to those from the detailed analysis of combustion waves due to Zeldovich et al [26].
Before doing so, we may note that the model presented is valid provided that Q∂vch

∂TB
|T > α;

otherwise equation (71) breaks down and there are no wavefront solutions for the field TB.
This is due to the fact that in such an instance the effect of the energy transfer to the inert
species A dominates the dynamics: the temperatures TA and TB become equilibrated in a
shorter timescale than that of the reaction, i.e. we have τe > τr (this follows directly from
the definitions of these quantities below equation (71)). This means that the approximation
TA � T , applied above, breaks down even in the leading edge of the front (TB � T + ε).

Let us now introduce the following dimensionless variables:

t∗ = κt (74)

α∗ = α

κρrcr
(75)

x∗ =
√
κρrcr

λB
x (76)

where κ is the inverse of a characteristic time for the chemical reaction (e.g. 1/τr , with τr
defined above). Then

v∗ =
√
ρrcr

λBκ
v (77)
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and after introducing F ∗ = Qvch/(κρrcr)—which has units of temperature, equation (71) can
be written in dimensionless form,

v∗ = 2

√
∂F ∗

∂TB

∣∣∣∣
T

− α∗. (78)

This equation is the thermal analogue to equation (12.10) in [29], which analyses wavefronts in
diffusive predator–prey systems (instead of conductive systems, which are the ones considered
here). It is also analogous to equation (7) in [49], which applies to the propagation of
domain walls in superconductors. In the special case α∗ = 0, equation (78) is nothing but
the thermal analogue to the well known Fisher–Piskunov minimal propagation velocity for
reaction–diffusion fronts [26, 29].

In order to compare equation (78) to Zeldovich’s results, let us consider a combustion
process for a bimolecular chemical reaction (νB = νC = 1 in equation (2)) with Arrhenius
kinetics [25, 26],

vch = Ã exp

[
− Ea

kTB

]
nBnC (79)

where the temperature dependence of the pre-exponential factor Ã can, for practical purposes,
be ignored [25, 26], Ea is the activation energy and k is Boltzmann’s constant. As explained
above, and is applied in combustion theory [26], in thermal fronts heat is transferred by
conduction, which afterwards activates the chemical reaction; thus we may ignore the
perturbations in the concentrations with respect to their initial values nB0 and nC0. Then,
use of equation (79) into (78) yields

v∗ = 2
√
A∗e−Ea/kT − α∗ (80)

where A∗ = ÃQnB0 nC0Ea/(κρrcrkT
2).

For α∗ = 0, equation (80) reduces to

v∗
∼ e−Ea/2kT (81)

which is the classical result due to Zeldovich for the minimal propagation speed of combustion
fronts (see equations (4.21) and (4.41) in [26]). Experimentally it is observed that, after
an initial transient, the front evolves according to this minimal speed [26]. Equation (80)
generalizes Zeldovich’s result.

Below equation (34) we have seen that the second law of thermodynamics implies that
α∗ > 0. It is thus seen from equation (80) that the presence of this parameter lowers the
propagation velocity of the thermal front, as was to be expected intuitively since it corresponds
to a heat loss due to the presence of the nonreacting component A (see the term α(TA − TB)

in equation (63)). In figure 1 we illustrate this effect for some values of Ea/kT in the typical
range of combustion reactions [26]. It is worthwhile to observe that for this range we have
Ea/kT > 12, so additional nonequilibrium effects related to the reverse reaction can be
neglected and the Arrhenius equation in its simplest form, namely equation (79), can be
applied [10]. The dashed curve in figure 1 is the classical result (figure 1.30 in [26]), and the
other curves correspond to its generalization to several-temperature systems. The predicted
decrease of wavefront propagation shown in figure 1 follows from equation (80).

In the next section, the previous results will be generalized by taking into account an
additional effect, namely that resulting from the finite speed of thermal signals.

3.2. EIT

The time-delayed equation (53) describes a different heat conduction regime than that
corresponding to the classical, Fourier-type law (35). Time-delayed equations have been
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Figure 1. Comparative plot of the predictions for the dimensionless speed of combustion wavefronts
as a function of the dimensionless temperature (see equation (80)). The dashed curve (α∗ = 0) is
the curve due to Zeldovich (see figure 1.30 in [26]). When there is a heat loss mechanism at work
(α∗ = 0), the propagation speed is decreased.

widely studied for single-temperature systems and are known to avoid the problem (mentioned
at the beginning of section 2.2) of the infinite speed of thermal signals [15]. Here we will analyse
the consequences on the propagation of thermal wavefronts. Use of the EIT equations (51)
and (53) in the energy conservation equation (62) yields the following temperature evolution
equation:

ρrcr
∂

∂t

(
θB + τB

∂θB

∂t

)
= λBeff∇2θB +

∑
i

Dqi∇2ĉi +

(
Q +

Mαv

'

)(
vch + τB

∂vch

∂t

)

+α

[
(θA − θB) + τB

∂(θA − θB)

∂t

]
(82)

which reduces, as it should, to equation (64) in the infinite-speed limit for thermal signals
(i.e. of vanishing delay time, τB → 0 [15]). Equation (82) is an extension of the well known
telegrapher’s equation because of the presence of the terms in vch and its time derivative (due
to the chemical reaction) and α(θA −θB) and its time derivative (due to the relaxation of energy
among the chemical species), as well as cross effects. By following exactly the same steps as
in section 3.1, we obtain that equation (69) is generalized into

(λBeff − τBρrcrv
2)µ2 + (ρrcr − τB9)vµ +9 = 0 (83)

with 9 ≡ (Q + Mαv

'
) ∂vch
∂θB

|θ − α.
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Solving this equation for µ and requiring that µ ∈ R we find that the minimum velocity
of the thermal wavefront is

v = 2
√
λBeff9

ρrcr + τB9
. (84)

This result reduces, as it should, to equation (70) in the limit τB → 0. We see from
equations (70) and (84) that, for a given value of the temperature read by a thermometer (θ in
the case of equation (84) and T in the case of equation (70)), the effect of the delay time τB of
heat conduction is to lower the speed of thermal wavefronts, as was to be expected intuitively.

4. Comparison with experiment

In the previous section we analysed the propagation speed of thermal wavefronts according to
the CIT approach (section 3.1) and to the time-delayed, or EIT one (section 3.2). The latter
approach may be of interest in the context of forest-fire models, in which a delay time connected
to the ignition of a green tree close to a burning one is used [27]. However, this application
requires a very detailed and lengthy analysis and will not be treated here. We will, instead,
compare the predictions of the CIT approach (section 3.1) with experiment. Clearly, this is a
necessary comparison before attempting the much more complicated problem of forest fires,
in which many additional factors become important (e.g., the time delay mentioned above, the
spatial heterogeneities linked to the mean distance among trees, the wind and slope effects,
turbulence, etc).

We will not include cross terms, as usual in combustion studies. They are typically,
if not always, neglected in the literature on combustion because it is reasonable to expect
them to be negligible within the CIT approach (moreover, they cannot be evaluated from the
experimental data available because the cross coefficients have not been measured for those
systems for which we will compare with measured flame speeds).

As we have stressed, up to this point we have not assumed a specific heat loss mechanism.
In this section we will consider one that often appears, namely radiative heat losses. In
spite of the fact that, for the sake of clarity, we have often referred to an inert component
responsible for heat losses, our formalism can be easily applied to radiation losses. Then,
the heat loss term in the energy conservation equation (i.e. in our equations (62), (63), (65)
and (67)) is simply αA = 4aσ(T 4

A − T 4
B ) (instead of αA = α(TA − TB)), with a the mean

absorption coefficient, σ the Stefan–Boltzmann constant and TA the room temperature [51].
It has been previously stressed [52–57] that in this case the entropy production is not bilinear.
This means that the linear relationship αA = α(TA − TB) (see equation (34)) does not hold
(except in the case TA � TB). However, the wavefront analysis presented in section 3 can
be applied, simply replacing the heat loss term in the equations mentioned above. It is also
worth mentioning that there is thermodynamical consistency since it can be shown that σ s � 0
for αA = 4aσ(T 4

A − T 4
B ), as done originally by Planck [58] (see equation (6) in [52]). By

following exactly the same steps as in section 3.1, we find that equation (68) is replaced by†

−ρrcrv dε

dz
= λB

d2ε

dz2
+Q

∂vch

∂TB

∣∣∣∣
T

ε − 16aσT 3ε (85)

† Since we neglect cross terms, equation (67) becomes −ρrcrv dTB
dz = λB

d2TB
dz2 +Qvch(TB) + 4aσ(T 4

A − T 4
B ). As in

section 4.1, we set TB � T + ε, with T the pyrolysis temperature (see footnote on page 6963), whereas TA is now

the room temperature. Linearization yields −ρrcrv dε
dz = λB

d2ε
dz2 +Q(vch|T + ∂vch

∂TB
|T ε) + 4aσ(T 4

A − T 4 − 4T 3ε) = 0.

The pyrolysis zone condition (ε � 0, see footnote on page 6963) becomesQvch|T + 4aσ(T 4
A − T 4) = 0. Subtracting

these two equations we obtain equation (85).
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and the propagation speed (71) becomes

v = 2
√
λB

ρrcr

√
Q
∂vch

∂TB

∣∣∣∣
T

− 16aσT 3. (86)

We will compare with experimental data for flame spread over cellulosic fuels (paper and
very thin wood samples). In these cases, combustion does not take place at room temperature
but after evaporation and the release of combustible gases. The accepted temperature for
the start of the exothermic reaction (fast pyrolysis) is T = 280 ◦C = 553 K [59]†. We
may note that this is well above the room temperature TA, so in fact the approximation
αA = 4aσ(T 4

A − T 4
B ) � −4aσT 4

B can be applied. A global Arrhenius rate—similar to
equation (79)—can be used [60],

vch = Ãρsolid exp

[
− Ea

RTB

]
(87)

where ρsolid is the fuel density, R = 8.314 J (mol K)−1 and the recommended values for the
kinetic parameters are Ea = 3.1 × 104 cal mol−1 and Ã = 7 × 107 s−1 [60].

With the Arrhenius rate law above, equation (86) becomes

v = 2
√
λB

ρrcr

√
Q
ρsolidEaÃ

RT 2
− 16aσT 3 (88)

and the global reaction heat isQ = 2 × 107 J kg−1 [60]. In order to compare with experiment,
we also need numerical values for the parameters λB, ρr , cr , ρsolid and a at T = 553 K.
Since they are not available for the specific samples used in the experiments cited below, we
shall use the recommended values for combustion studies of cellulosic fuels at T = 553 K.
Note that this uncertainity in the values of the relevant parameters may be seen as additional
reason to neglect cross terms, which will presumably have a lower effect. The recommended
values are λB = 0.15 W (K m)−1, ρsolid = 400 kg m−3, ρr cr = 8.97 × 105 J (kg K)−1‡ and
a = 2.4 m−1 [50]. Then, equation (88) yields a flame velocity of v = 1.08×10−4 m s−1, which
is of the same order of magnitude as that observed experimentally in [62] (5.1(5)×10−4 m s−1).
Similar experimental results have been obtained by other authors§. Since the values of the
parameters λB, csolid, ρsolid and a were not measured for the specific samples used, we consider
that the order-of-magnitude agreement with experiment is satisfactory.

† A more recent summary of experimental data for both chemical kinetics and thermal parameters can be found in [60].
‡ λB is the thermal conductivity of the solid fuel since that of the gas is easily checked to be much lower
(∼10−2 W (K m)−1 [61]) and would yield a slower flame speed. This means that heat conduction takes place
mainly in the solid. On the other hand, according to [60], the average values of the density and specific heat
are ρsolid = 400 kg m−3 and csolid = 2241.6 J (kg K)−1. In our model (see the text below equation (61)),
ρrcr = ρsolidcsolid + ρgascgas. Since, for example, ρO2cO2 ∼ 102 J (kg K)−1 [61], we have ρrcr � ρsolidcsolid =
8.97 × 103 J (kg K)−1. Similarly ρr � ρsolid = 400 kg m−3 [60].
§ For the sake of completeness, we mention some additional experimental results. In [50], the relevant parameter
values given by the authors are Q = 11.76 × 106 J kg−1, ρr � ρsolid = 519 kg m−3, a = 2.4 m−1,
Ea = 2.494 × 105 J mol−1, Ã = 7.8 × 1016 s−1 and T = 745 K (see figure 3 in [50] and its discussion). The
values of λB and cr are not given in [50], so we have to estimate them again from the recommended values in [60]
at this T , which are λB = 0.22 W (K m)−1 and cr � csolid = 2984.0 J (kg K)−1. Then equation (88) yields
v = 5.5 × 10−3 m s−1, which is in reasonable agreement (concerning the order of magnitude) with the experimental
value in [50], namely 4.4 × 10−3 m s−1. We stress that a better agreement could be obtained if the values of λB
and cr were available for the specific filter paper used in these experiments. Similarly, Frey and T’ien [63] as well
as LeVan [65] have measured v ∼ 10−3 m s−1 for the speed of flames over paper and over thin wood samples,
respectively. Of course, our model is valid under the thin-fuel assumption, usual in solid combustion theory, since
only in this case can the uni-dimensional approximation (i.e. the assumption that T depends only on x) be applied
(see the text above equation (67)).
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We now turn to the effect of radiative heat losses. If they were neglected, the front speed
would be given by the approximation (see equation (88))

v0 = 2
√
λB

ρrcr

√
Q
ρsolidEaÃ

RT 2
. (89)

For the same values of the parameters as above, this yields v0 = 1.09 × 10−4 m s−1, so
the effect is 1%. Note that the value for a above corresponds to the absorption coefficient
for paper samples [50], i.e. gas absorption is neglected, but, as Ronney and co-workers have
recently stressed [64,66], in many cases the absorption coefficient is much higher because of the
absorption by inert gases or mesoscopic particles present in the mixture. For example, in [66]
the value a = 26 m−1 is considered. Then, the same values above for the other parameters
yield a correction of 15%. This is illustrated in figure 2, where v, v0 and the relative effect
(v0 − v)/v (as a percentage) are plotted as functions of the absorption coefficient a for the
same values of the other parameters as above. From figure 2, the importance of this possible
effect is clear. It would of course be very interesting if experiments could be performed by
varying the amount of inert gases [66] or absorbing mesoscopic particles [64] (i.e. the value of
a) and comparing the observed speeds with the prediction in figure 2. We stress, however, that
for such a comparison to be conclusive it would be necessary to measure not only the flame
speed, but also all of the other parameters appearing in equation (88). From the comments and
the literature survey presented above, this seems to be an interesting experimental problem,
which does not seem to have been tackled in full detail and which, in our opinion, deserves
attention.

The main point in our study is that, in contrast to solving a complex set of differential
equations numerically (see, e.g., [50] and [66]), the front velocity can be evaluated readily
from equation (88), provided of course that the values for the relevant parameters are available.
Our approach is also completely different from activation-energy assymptotics, a method in
which one assumes from the beginning a very high dimensionless activation energy (which we
have not assumed), takes into account only higher-order derivatives in the evolution equations
(which has not been done here) and keeps first-order terms in the inverse of the dimensionless
activation energy [51, 67–69].

Let us finally stress that in the case of mesoscopic particles (see [64] and references
therein), when comparing with experiment the additional effect of the heat released due to
collisions of the reacting gas molecules with the particles (equation (8) in this paper) should
in general be included. We plan to deal with this topic in future work. Here we only mention
that, using the approach presented, from equation (8) it is straightforward to see that

v = 2
√
λB

ρrcr

√
Q
ρsolidEaÃ

RT 2
− 16aσT 3 − πr2

√
π

cvP

R

(
8k

mBT

)1
2

af nA (90)

which generalizes equation (88) because of the new term due to the collisions with the
mesoscopic particles. We stress that, again, all of the parameters appearing in this equation
(e.g., the number density nA of mesoscopic particles) should be measured experimentally
to make it possible to compare the order of magnitude of the flame speed predicted by this
equation and that measured in experiments. Also, in this specific application the Knudsen
accommodation factor af should ideally be measured by means of independent experiments
(see [42]). Finally, a further effect that we plan to deal with in a future paper is radiative
reabsorption by the inert particles. This will yield a net heat loss decrease and its role has been
recently stressed in the combustion literature [64, 66].
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Figure 2. Comparative plot of the predictions for the speed of combustion wavefronts as a function
of the absorption coefficient. The dashed curve corresponds to neglecting radiative heat losses,
equation (89). When radiative heat losses are included (full curve), the propagation speed is lower
because part of the energy from the exothermic reaction is carried away by photons (equation (88)).
The dot–dashed curve is the effect of radiative losses, (v0 − v)/v, in %. The values of the
parameters are Ea = 3.1 × 104 cal mol−1, Ã = 7 × 107 s−1, Q = 2 × 107 J kg−1, T = 553 K,
λB = 0.15 W (K m)−1, ρsolid = 400 kg m−3 and ρr cr = 8.97 × 105 J (kg K)−1.

5. Conclusions

In summary, this paper reports the following results.

(i) A CIT description of reactive–conducting systems with several temperatures and a carrier
component (section 2.1).

(ii) An extension of this description in order to take into account the finite speed of thermal
signals (section 2.2). As a by-product of this model, we have seen that outside LTE,
the generalized temperatures θ of EIT are the relevant thermal fields of the system
(equation (51)).
In both sections 2.1 and 2.2, we have been guided by a recent thermodynamical theory of
heat transport and energy equilibration in radiation–matter systems [35, 36].

(iii) The model in section 2.1 has been applied to the problem of thermal wavefront propagation
(section 3.1). The results have been illustrated for combustion fronts, thereby generalizing
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Landau’s and Zeldovich’s results (figure 1). We have predicted a reduction of the thermal
speed due to the energy losses (equation (78)).

(iv) In section 4, we have seen that the order of magnitude of the predicted speed is in agreement
with available experimental data for combustion fronts over cellulosic fuels. It has also
been shown that the effect of radiative losses can easily be about 15% (see figure 2). Our
formalism is not restricted to radiation losses but may be applied, e.g., to include the
energy loss due to the collisions of reacting molecules with mesoscopic particles.

(v) The model in section 2.2 has been used to generalize the results of (iii) to the case of
time-delayed heat conduction (section 3.2). This leads to the prediction of an additional
decrease of the wavefront speed (equation (84)). This time-delayed approach can be useful
in forest-fire models, where a delay arises because of the ignition time of green trees [27].
We plan to deal with this application in a future work.
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